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Abstract. The propagator for the bosonic string is obtained by making use of the bosonic 
dual resonance model. The two-stage gauge-fixing process employed circumvents the 
string’s Gribov problem and verifies the integration measure found by Govaerts. 

In this paper the bosonic string propagator is obtained using Govaerts’ amended form 
of the Fradkin-Vilkovisky (FV)  theorem [l ,  21. The derivation makes use of the dual 
resonance model via a two-stage gauge-fixing process and confirms the result obtained 
by Govaerts using a more direct method [3]. The principle advantage of the approach 
presented below is that the path integral measure emerges naturally from the formalism 
of Batalin, Fradkin and Vilkovisky (BFV) (see [ 11). Govaerts makes the point that the 
string suffers from a Gribov problem; i.e. no good gauge-fixing functions exist and the 
path integral measure must therefore be determined by some indirect means. 

Any point on the string world sheet can be parametrised by two coordinates; a 
timelike parameter T and a spacelike parameter U. In terms of these parameters the 
action (see [4]) for the massless relativistic string is 

S=l:dr [ : d u 2 ’ = - L j : d i  2 7rff { : ~ U [ ( X ’ X ) ~ - ( X ’ ) ’ ( X ) ~ ] ’ ’ ~  (1) 

where X = ~ X / ~ T  and x ’ = d x / a u  and CY’ is a constant with the dimension of length 
squared. S is invariant under reparametrisations U + 6(u, 7); T + ?(U, T )  and local 
Weyl rescalings of the world sheet metric gab + A(a)gab. The dynamical variables are 
x P ( u ,  T )  and -fp(u, 7) .  The momentum -fP(a, T ) ,  conjugate to x P ( a ,  T ) ,  is defined by 

and the Poisson bracket 

{X,(V, T) ,z ” (U ’ ,  T ) } p ~ = 8 ; 6 ( ~ 7 - C ’ )  (3) 
is the only non-zero bracket. We find two primary constraints 

The Poisson brackets between the constraints are weakly zero, so T, and T2 are first 
class. The Hamiltonian density on the surface of constraint is zero and the consistency 
conditions T = 0 determine the total Hamiltonian density, ZT, without the occurrence 
of any further constraints: 

X T  = A 1 (a, 7) T* ( C Y  7) + A*(a, 7) T2( 0 , 7 )  ( 5 )  
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where the A (a,  T )  are Lagrange multipliers for the constraints. The total Hamiltonian 
is HT = j,“ d a  XT. The Hamiltonian can be expressed in an alternative form by extend- 
ing the domain of (+ from [0, 7r3 to [ -T ,  T ] .  Any linear combination of the constraints 
is itself a constraint and so 

1 
( + E  [-7r, T ] .  

1 zwn, +- $x’W +- x;x”l= 0 
7TcY 4rr2fft2 

Defining 

fp ( -a )  = n,(a) x L ( - a )  = -x’((+) (7) 

the linear combination ( 6 )  gives back our two constraints T,  and T2 on the interval 
(+E [0, -7r3. H T  can then be expressed as 

We can write the Hamiltonian in terms of the string’s Fourier coefficients if we 
substitute into (8) the following even Fourier expansions for x, and 2,. 

( In  making these expansions on the interval [ - x ,  7 r ]  we have implicitly assumed the 
open-string boundary conditions, xL(0, T )  =XI( 7r, 7) = 0.) With the Fourier expansions 
(9) and  the gauge choice dA((+, 7 ) / d a  = 0, H T  can be rewritten as 

4A ’( T )  
X w ( ( T ,  T ) = - X ” ” ( ( T ,  T ) .  

7 ra  

This is the equation describing transverse oscillations of a string: in the gauge 
dA(a,  7)/d(+ = 0 only the tranverse modes of oscillation contribute to the string Hamil- 
tonian HT. Substituting equations (9) into (10) gives 

Note that with the choice A ( T )  = 1/27r, H T  becomes the Nambu Hamiltonian, HB; see 
[ 5 ] .  From [ 5 ]  we have 

{x;(T), f n v ( T ) } P B  = s r s m n  {xK( 7),  x n v (  T ) } P B  = 0 = 7 ) ~  2nv( 7 ) J P B  (14) 

as the Poisson brackets for the Fourier coefficients. 
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We now quantise the string in the gauge dA ( U, r ) / d u  = 0 using the BPV approach 
[l]. Since Ho=O, HT must be a linear combination of constraints. From (13)  this 
leads us to regard 

as the only phase space constraint. T is therefore first class. The dynamical variables 
defining the theory are x:( 7 )  and Z:( 7) .  The multiplier A is now taken as a dynamical 
variable with conjugate momentum v. We set v c- 0, so that the dynamics of the original 
theory remains unchanged. The phase space is further extended by introducing a 
fermionic ghost variable 77 and conjugate momentum i j  for the first-class constraint 
T. Similarly, we require fermionic ghosts 5 and f for the conjugate multiplier v. The 
superlarge phase space is 

{x:, Xn, ,  A, v, 77, i j ,  5, CI n = 0, 1 ,  . . . , cc 
with the Poisson brackets 

{A, v)PB = (77, $ } P B =  - 1  (5, f } P B  = - 1  

in addition to equations (14). Writing G, = (v, T), the constraint algebra is 

{ G a ,  Gb)F'B = { G a y  H O I P B  = 0. 

The BRST generator is R = v5+ T77 and the BFV path integral is 

Z = [ [dx:l[d x -np 1 [ dh 1 [ d v 1 d 77 1 [ d i j  1 [ d 5 1 d fl 

with the BRST invariant boundary conditions 

x:( q) = x:, 

V( T i )  = 0 = V( T f )  

X:( Tc) = X:F 

77(?) = 0 = 77,(fJ :(Ti) = 0 = C( Tf ) .  

The gauge choice T = - A i j  gives 

z = [ d x  :: 1 [ d x  :: 1 r d A 1 [ d v 1 r d 77 1 [ d i j  1 Ed 5 1 r d Cl I 
Integrating over v yields a delta functional in A ;  the above gauge choice is a proper-time 
gauge. Integrating over A and the ghost variables gives 

5 

Z -  Im dAo(Tf- TJ I [dxi][dZt] exp dT(xt2; - A o Z t X E ) )  n Kn(Ao) (22) 
-5 n = l  

where 
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where o, = n/27ra’ and A. is a (7-independent) constant. Equation (22) shows the 
string propagating as a product of an infinite number of independent normal modes. 
The zero-mode contribution has the same form as the massless point-particle propagator 
(see [2]). K ,  is a harmonic oscillator path integral and can be evaluated by applying 
tb standard result in [6] giving 

where D’ is the number of string mode polarisations. Since the timelike and longitudinal 
modes do not contribute to the string Hamiltonian in the gauge dA (a, .r)/da = 0 we 
set D’ = D - 2 where D is the dimension of spacetime. 

Since the A ( a ,  7) are invariant under Weyl rescalings a good gauge slice of the 
space of world sheet metrics corresponds to a good gauge slice of the space of 
multipliers. With Ho = 0 the string’s Teichmuller space can be written as 

{A (U,  7)) 

{rescalings} x {reparametrisations} 
Teich = 

Having integrated over a, the reparametrisation under which the action is invariant is 
now T + f (7 )  so that we can write 

The parameter c = 5:: dT A (7)  is now the Teichmuller parameter for the string. In a 
proper time gauge, c = A,( Tf - T~). Writing 2 in terms of the Teichmuller parameter gives 

) fi Kn(c) 
i (x iF  - xi,)’  

4c n = l  
Z - dc( E) D’2 exp( 

-cc 

where we have quoted the closed form for the zero-mode propagator from [2]. Notice 
that the action (1) is invariant under the diffeomorphism 7i4+ Tf, dT+ -dT. So, as for 
the point particle, the modular group is Z2 and 

Teich 
Moduli space = -. 

Z 2  

H 2  maps c into -c, so the following path integral, obtained from (27) by restricting 
the integration over c to a single cover of moduli space, is the string propagator: 

The boundary conditions on the timelike and longitudinal modes must be xflF = xflI = 0. 
By zeta function regularisation [3] we can replace 
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exp[ic( D - 2)] 
24na'  

- (  D+2) /2  

The factor exp[ic( D - 2 ) ] / 2 4 m '  is the contribution to Z from the zero-point energy 
of the string's normal modes. If m, is the string's ground-state mass we have (see [7]) 

2 - 0  -1 
24a' a' 

- + D = 2 6 .  

The usual statement of the Fradkin-Vilkovisky theorem is that the BFV path integral 
(in this case (19)) is independent of the choice of v'. Govaerts presents counter 
examples to this orthodox statement for the case of the point particle [2]. He restates 
the FV theorem by saying that the path integral does not depend specifically on Y but 
on the gauge equivalence class of VI. Two gauge-fixing functions v' and v'' belong to 
the same equivalence class if they have identical Dirac brackets with the BRST generator 
Q. Any two gauge equivalent v' will lead to the same covering of moduli space in the 
path integral. The correct propagator should be obtained as an integral over a single 
covering of moduli space. The equivalence class of the v' which lead to such a single 
covering of moduli space is referred to as the class of good gauge-fixing functions. In 
Govaerts' work [3] on the string path integral he conjectures that no good gauge-fixing 
functions exist for the string. That is, the string suffers from a Gribov problem. 
However, with the above two-stage gauge-fixing approach we do obtain 2 as an integral 
over a single covering of moduli space. 

Govaerts makes the point that a complete gauge fixing for the string is achieved 
by the conditions 

AI(U, 7 )  = A 0  A 2 ( u ,  T )  = A,. (31) 
At least three equations are required to completely specify this gauge fixing: 

It is explained in [3] that the number of these equations provided by the choice of Y 
is equal to the number of multipliers A ( u ,  T). These conditions emerge as delta 
functionals in the gauge-fixed BFV path integral. Since the BFV formalism gives only 
two Lagrange multipliers for the string, the choice of Y cannot give a complete gauge 
fixing. This is a clear statement of the string's Gribov problem. It can now be seen 
that the two-stage gauge fixing presented here gets around the Gribov problem by 
piecing together the required three equations in three distinct steps. In combining TI 
and T2 to give a single constraint T we implicitly assume that Al(u, T )  = A 2 ( u ,  7). 
(a/aa)A (a, T )  = 0 was then specified in order to obtain the normal mode picture of the 
string (13). With a single multiplier remaining, the gauge choice Y = -A?  delivers the 
final equation as the delta functional S[A], giving a complete gauge fixing. (Note 
that a two-stage gauge fixing was used by Narain [8] to circumvent the Gribov problem 
in the path integral quantisation of monopole strings.) 

Govaerts gets round the string's Gribov problem by over-fixing the gauge, so that 
the covering of moduli space reduces to a single point, and then integrating over 
moduli space with an undetermined function p ( c )  inserted. A careful comparison of 
the above propagator with [3] shows that the two methods are essentially the same. 
Govaerts' integral over the non-zero modes of the multipliers and ghosts exactly cancels 
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the contributions from the unphysical longitudinal and timelike modes of the string 
coordinates. In the above approach, consideration of the classical equation of motion 
(12) shows that the unphysical modes d o  not contribute to Z. Govaerts’ eventual 
conclusion that ~ ( c )  = 1 does not follow naturally from the path integral formalism, 
but by comparison with the point-particle path integral. In the above, the propagator 
is obtained as an  integral over moduli space such that p ( c )  = 1 is automatically verified. 

Killingback [9] gives a geometrical description of the Gribov problem. He explains 
that it is not possible to find a gauge for the string path integral which is valid over 
the whole of moduli space. Local gauges can, however, always be found. It is, then, 
surprising to obtain p ( c )  = 1 in the above: this gives the impression that the Gribov 
problem does not cause any difficulties in the string path integral after all. Fabbrichesi 
[ 101 has suggested that the Gribov problem corresponds to a particular B R ~ T  transforma- 
tion and so is of no consequence in the BFV path integral. The specific meaning of 
this statement is not, however, clear to me. It is possible that assuming the Fourier 
expansions (9) (as Govaerts does also) gives a restriction to a region of moduli space 
over the whole of which a single gauge fixing is valid. 
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